涂层刀具是在强度和韧性较好的硬质合金或高速钢(HSS)基体表面上,利用气相沉积方法涂覆一薄层耐磨性好的难熔金属或非金属化合物(也可涂覆在陶瓷、金刚石和立方氮化硼等超硬材料刀片上)而制备的。
涂层作为一个化学屏障和热屏障,减少了刀具与工件间的扩散和化学反应,从而减少了基体的损。涂层刀具具有表面硬度高、耐磨性好、化学性能稳定、耐热耐氧化、摩擦系数小和热导率等特性,切削时可比未涂层刀具寿命提高3~5倍以上,提高切削速度20%~70%,提高加工精度0.5~1级,降低刀具消耗费用20%~50%。
涂层刀具已成为现代切削刀具的标志,在刀具中的使用比例已超过50%。切削加工中使用的各种刀具,包括车刀、镗刀、钻头、铰刀、拉刀、丝锥、螺纹梳刀、滚压头、铣刀、成形刀具、齿滚刀和插齿刀等都可采用涂层工艺来提高它们的使用性能。
目前,常用的刀具涂层方法有化学气相沉积法(CVD)和物理气相沉积法(PVD)两种。近年来出现一些新的涂层工艺,具有良好的应用前景。
涂层方法
生产上常用的涂层方法有两种:物理气相沉积(PVD) 法和化学气相沉积(CVD) 法。前者沉积温度为500℃,涂层厚度为2~5μm;后者的沉积温度为900℃~1100℃,涂层厚度可达5~10μm,并且设备简单,涂层均匀。
因PVD法未超过高速钢本身的回火温度,故高速钢刀具一般采用PVD法,硬质合金大多采用CVD法。
硬质合金用CVD法涂层时,由于其沉积温度高,故涂层与基体之间容易形成一层脆性的脱碳层(η相),导致刀片脆性破裂。
近十几年来,随着涂覆技术的进步,硬质合金也可采用PVD法。国外还用PVD/CVD相结合的技术,开发了复合的涂层工艺,称为PACVD法(等离子体化学气相沉积法)。即利用等离子体来促进化学反应,可把涂覆温度降至400℃以下(涂覆温度已可降至180℃~200℃),使硬质合金基体与涂层材料之间不会产生扩散、相变或交换反应,可保持刀片原有的韧性。
CVD法属于原子沉积类,是利用金属卤化物的蒸气、氢气和其他化学成分,在950~1050℃的高温下,进行分解、热合等气、固反应沉积物以原子、离子、分子等原子尺度的形态在加热基体表面形成固态沉积层的一种方法,其过程包括三个阶段:物料汽化、运输到基体附近和在基体上形成覆盖层。
CVD技术主要用于硬质合金车削类刀具的表面涂层,其涂层刀具适合于中型、重型切削的高速粗加工及半精加工。
CVD法与其他涂层方法比较,不仅设备简单,工艺成熟,还有以下优点:
1、沉积物种类多,能涂金属、合金、碳化物、氮化物、硼化物、氧化物、碳氮化物、氧氮化物氢碳氮化物等。
2、有高度的渗透性和均匀性,可获得不同组织的多层涂层,涂层厚薄均匀。
3、沉积速率高,而且容易控制。
4、涂层纯度高,晶粒细而致密。
5、黏附力较强,可获得较厚的涂层。
6、工艺成本低,适合大量生产。
PVD法是利用蒸发或溅射等物理形式把材料从靶源移走,然后通过真空或半真空空间使这些携带能量的蒸气离子沉积到基片或零件表面以形成膜层,通过气相反应过程,使蒸发或溅射出的金属原子发生气相反应,从而在刀具表面沉积出所要求的化合物。PVD涂层能涂氮化钛、碳氮化钛、铝钛氮化合物,以及各种难熔金属的碳化物和氮化物。
目前,常用的PVD方法有低压电子束蒸发(LVEE)法、阴极电子弧沉积法(CAD)、晶体管高压电子束蒸发法( THVEE)、非平衡磁控溅射法(UMS)、离子束协助沉积法(IAD)和动力学离子束混合法(DIM)。其主要差别在于,沉积材料的汽化方法以及产生等离子体的方法不同,而使得成膜速度和膜层质量存在差异。
PVD技术主要应用于整体硬质合金刀具和高速工具钢刀具的表面处理,已普遍应用于硬质合金钻头、铣刀、铰刀、丝锥、异形刀具、焊接刀具等的涂层处理。
和CVD法比较,PVD法有以下优点:
1、涂层温度低于高速工具钢回火温度,故不会损害高速工具钢刀具的硬度和尺寸精度,涂层后不再需要热处理。
2、涂层有效厚度只有几微米,故可保证刀具原有的精度,适于涂覆高精度刀具。
3、涂层的纯度高,致密性好,涂层和基体的结合牢固,涂层性能不受基体材质影响。
4、涂层均匀,切削刃和圆弧处无增厚或倒圆现象,故复杂刀具也能获得均匀涂层。
5、不会产生脱碳相,也无CVD法因氯的浸蚀和氢脆变形所引起的涂层易脆裂的情况,涂层刀片强度较高。
6、工作过程干净,无污染,无公害。
目前,PVD技术不仅提高了薄膜与刀具基体材料的结合强度,涂层成分也由单一涂层发展到了TiC、TiCN、ZrN、CrN、MoS2、 TIAIN、 TiAICN、TiN-AIN、CN等多种多元复合涂层,且由于纳米级涂层的出现,使得PVD涂层刀具质量又有了新的突破,这种薄膜涂层不仅结合强度高、硬度接近CBN、抗氧化性能好,并可有效地控制精密刀具刃口形状及精度,在进行高精度加工时,其加工精度毫不逊色于未涂层刀具。
涂层材料选择标准
在涂层刀具制造过程中,硬度高、耐磨性好、化学性能稳定、不与工件材料发生化学反应、耐热耐氧化、摩擦因数低,以及与基体附着牢固等要求,其中涂层氧化性是与切削温度最直接相关的技术条件。
所以硬质涂层材料已由最初只能涂单一的TiC、TiN、Al2O3,进入到开发厚膜、复合和多元涂层的新阶段。新开发的TiCN、TiAlN、TiAlN多元、超薄、超多层涂层与TiC、TiN、Al2O3等涂层的复合,加上新型的抗塑性变形基体,在改善涂层的韧性、涂层与基体的结合强度、提高涂层耐磨性方面有了重大进展。又突破了在硬质合金基体上涂覆金刚石薄膜技术,全面提高了刀具的性能。
TiAlN涂层在高温下仍能保持其硬度的原因在于可在刀具与切屑之间形成一层氧化铝,氧化铝层可将热量从刀具传入工件或切屑。与高速钢刀具相比,硬质合金刀具的切削速度通常更高,这就使TiAlN成为硬质合金刀具的首选涂层,硬质合金钻头和立铣刀通常采用这种PVDTiAlN涂层。
从应用技术角度讲:除了切削温度外,切削深度、切削速度和冷却液都可能对刀具涂层的应用效果产生影响。
常用涂层材料进展及超硬涂层技术
硬质涂层材料中,工艺最成熟、应用最广泛的是TiN。目前,工业发达国家TiN涂层高速钢刀具的使用率已占高速钢刀具的50%一70%,有的不可重磨的复杂刀具的使用率已超过90%。
但TiN与基体结合强度不及TiC涂层,涂层易剥落,且硬度也不如TiC高,在切削温度较高时膜层易氧化而被烧蚀。TiC涂层有较高的硬度与耐磨性,抗氧化性也好,但其性脆,不耐冲击。TiCN兼有TiC和TiN两种材料的优点,它在涂覆过程中可通过连续改变C、N的成份控制TiCN性质,并形成不同成份的多层结构,可降低涂层的内应力,提高韧性,增加涂层的厚度,阻止裂纹的扩展,减少崩刃。
TiAlN、CrN、TiAlCrN是开发的硬质涂层新材料。TiAlN涂层刀片已商品化。它的化学稳定性和抗氧化磨损性能好,用其加工高合金钢、不锈钢、钛合金和镍合金时的刀具寿命可比TiN涂层高3~4倍。此外,TiAlN涂层中如果有合适的铝浓度,切削时在刀具前刀面和切屑的界面上还会产生一层硬质的惰性保护膜,该膜有较好的隔热性,可更有效地用于高速切削。